Author:
Ahrens Benedikt,North Paige Randall
Publisher
Springer International Publishing
Reference15 articles.
1. Ahrens, B., Kapulkin, K., & Shulman, M. (2015). Univalent categories and the Rezk completion. Mathematical Structures in Computer Science, 25, 1010–1039. https://doi.org/10.1017/S0960129514000486
2. Ahrens, B., & Lumsdaine, P. L. (2017). Displayed categories (conference version). In D. Miller (Ed.), 2nd International Conference on Formal Structures for Computation and Deduction (FSCD 2017), Leibniz International Proceedings in Informatics (LIPIcs) (Vol. 84, pp. 5:1–5:16). Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.FSCD.2017.5
3. Altenkirch, T. (2019). Naïve type theory, In S. Centrone, D. Kant, & D. Sarikaya (Eds.), Reflections on the foundations of mathematics. Cham: Springer.
4. Awodey, S. (2014). Structuralism, Invariance, and Univalence. Philosophia Mathematica (III), 22, 1–11. https://doi.org/10.1093/phimat/nkt030
5. Blanc, G. (1978/1979). Équivalence naturelle et formules logiques en théorie des catégories. Arch. Math. Logik Grundlag, 19(3–4), 131–137. https://doi.org/10.1007/BF02011874
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献