Author:
Li Yihao,Zhang Philippe,Tan Yubo,Zhang Jing,Wang Zhihan,Jiang Weili,Conze Pierre-Henri,Lamard Mathieu,Quellec Gwenolé,El Habib Daho Mostafa
Publisher
Springer Nature Switzerland
Reference35 articles.
1. Chaurasia, A., Culurciello, E.: Linknet: Exploiting encoder representations for efficient semantic segmentation. In: 2017 IEEE Visual Communications and Image Processing (VCIP), pp. 1–4. IEEE (2017)
2. Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 801–818 (2018)
3. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML’20, JMLR.org (2020)
4. Dai, L., et al.: A deep learning system for detecting diabetic retinopathy across the disease spectrum. Nat. Commun. 12(1), 3242 (2021)
5. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. CoRR abs/2010.11929 (2020). https://arxiv.org/abs/2010.11929
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献