1. Bzdok, D., Meyer-Lindenberg, A.: Machine learning for precision psychiatry: opportunities and challenges. Biol. Psychiat. Cogn. Neurosci. Neuroimag. 3, 223–230 (2018)
2. Eitel, F., Schulz, M.-A., Seiler, M., Walter, H., Ritter, K.: Promises and pitfalls of deep neural networks in neuroimaging-based psychiatric research. Exp. Neurol. 339, 113608 (2021)
3. Schulz, M.-A., Bzdok, D., Haufe, S., Haynes, J.-D., Ritter, K.: Performance reserves in brain-imaging-based phenotype prediction, bioRxiv (2022)
4. Shorten, C., Khoshgoftaar, T.M.: A survey on image data augmentation for deep learning. J. Big Data 6, 1–48 (2019)
5. Dufumier, B., Gori, P., Battaglia, I., Victor, J., Grigis, A., Duchesnay, E.: Benchmarking CNN on 3D anatomical brain MRI: architectures, data augmentation and deep ensemble learning, arXiv:2106.01132 [cs, eess], June 2021. arXiv: 2106.01132