1. Almubarak, H.A., et al.: Convolutional neural network based localized classification of uterine cervical cancer digital histology images. Proc. Comput. Sci. 114, 281–287 (2017)
2. Asiedu, M.N., et al.: Image processing and machine learning techniques to automate diagnosis of Lugol’s iodine cervigrams for a low-cost point-of-care digital colposcope. In: Optics and Biophotonics in Low-Resource Settings IV, vol. 10485, p. 1048508. International Society for Optics and Photonics (2018)
3. Das, A., Choudhury, A.: A novel humanitarian technology for early detection of cervical neoplasia: ROI extraction and SR detection. In: 2017 IEEE Region 10 Humanitarian Technology Conference (R10-HTC), pp. 457–460. IEEE (2017)
4. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)
5. Elson, D.A., Riley, R.R., Lacey, A., Thordarson, G., Talamantes, F.J., Arbeit, J.M.: Sensitivity of the cervical transformation zone to estrogen-induced squamous carcinogenesis. Cancer Res. 60(5), 1267–1275 (2000)