Author:
Goyal Akash,Upreti M.,Chowdary V. M.,Jha C. S.
Publisher
Springer International Publishing
Reference29 articles.
1. Akar Ö, Güngör O (2012) Classification of multispectral images using Random Forest algorithm. J Geodesy Geoinformation 1(2):105–112. https://doi.org/10.9733/jgg.241212.1
2. Bangira T, Alfieri SM, Menenti M, van Niekerk A (2019) Comparing thresholding with machine learning classifiers for mapping complex water. Remote Sens 11(11). https://doi.org/10.3390/rs11111351
3. Bates BC, Kundzewicz ZW, Wu S, Palutikof JP (eds) (2008) Climate change and water. Technical paper of the intergovernmental panel on climate change. IPCC Secretariat, Geneva, p 210
4. Belgiu M, Drăgu L (2016) Random forest in remote sensing: a review of applications and future directions. ISPRS J Photogrammetry Remote Sens 114:24–31. https://doi.org/10.1016/j.isprsjprs.2016.01.011
5. Bid S, Siddique G (2019) Identification of seasonal variation of water turbidity using NDTI method in Panchet Hill Dam, India. Model Earth Syst Environ 5:1179–1200. https://doi.org/10.1007/s40808-019-00609-8