A First Step Towards Automated Species Recognition from Camera Trap Images of Mammals Using AI in a European Temperate Forest

Author:

Choiński Mateusz,Rogowski Mateusz,Tynecki Piotr,Kuijper Dries P. J.,Churski Marcin,Bubnicki Jakub W.

Abstract

AbstractCamera traps are used worldwide to monitor wildlife. Despite the increasing availability of Deep Learning (DL) models, the effective usage of this technology to support wildlife monitoring is limited. This is mainly due to the complexity of DL technology and high computing requirements. This paper presents the implementation of the light-weight and state-of-the-art YOLOv5 architecture for automated labeling of camera trap images of mammals in the Białowieża Forest (BF), Poland. The camera trapping data were organized and harmonized using TRAPPER software, an open-source application for managing large-scale wildlife monitoring projects. The proposed image recognition pipeline achieved an average accuracy of 85% F1-score in the identification of the 12 most commonly occurring medium-size and large mammal species in BF, using a limited set of training and testing data (a total of 2659 images with animals).Based on the preliminary results, we have concluded that the YOLOv5 object detection and classification model is a fine and promising DL solution after the adoption of the transfer learning technique. It can be efficiently plugged in via an API into existing web-based camera trapping data processing platforms such as e.g. TRAPPER system. Since TRAPPER is already used to manage and classify (manually) camera trapping datasets by many research groups in Europe, the implementation of AI-based automated species classification will significantly speed up the data processing workflow and thus better support data-driven wildlife monitoring and conservation. Moreover, YOLOv5 has been proven to perform well on edge devices, which may open a new chapter in animal population monitoring in real-time directly from camera trap devices.

Publisher

Springer International Publishing

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3