Author:
Choiński Mateusz,Rogowski Mateusz,Tynecki Piotr,Kuijper Dries P. J.,Churski Marcin,Bubnicki Jakub W.
Abstract
AbstractCamera traps are used worldwide to monitor wildlife. Despite the increasing availability of Deep Learning (DL) models, the effective usage of this technology to support wildlife monitoring is limited. This is mainly due to the complexity of DL technology and high computing requirements. This paper presents the implementation of the light-weight and state-of-the-art YOLOv5 architecture for automated labeling of camera trap images of mammals in the Białowieża Forest (BF), Poland. The camera trapping data were organized and harmonized using TRAPPER software, an open-source application for managing large-scale wildlife monitoring projects. The proposed image recognition pipeline achieved an average accuracy of 85% F1-score in the identification of the 12 most commonly occurring medium-size and large mammal species in BF, using a limited set of training and testing data (a total of 2659 images with animals).Based on the preliminary results, we have concluded that the YOLOv5 object detection and classification model is a fine and promising DL solution after the adoption of the transfer learning technique. It can be efficiently plugged in via an API into existing web-based camera trapping data processing platforms such as e.g. TRAPPER system. Since TRAPPER is already used to manage and classify (manually) camera trapping datasets by many research groups in Europe, the implementation of AI-based automated species classification will significantly speed up the data processing workflow and thus better support data-driven wildlife monitoring and conservation. Moreover, YOLOv5 has been proven to perform well on edge devices, which may open a new chapter in animal population monitoring in real-time directly from camera trap devices.
Publisher
Springer International Publishing
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献