1. Liu, W., Wang, Z., Liu, X., Zeng, N., Liu, Y., & Alsaadi, F. E. (2017). A survey of deep neural network architectures and their applications. Neurocomputing, 234, 11–26.
2. Hitaj, B., Ateniese, G., & Perez-Cruz, F. (2017). Deep models under the GAN: Information leakage from collaborative deep learning, In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security.
3. Fakoor, R., Ladhak, F., Nazi, A., and Huber, M. (2013). Using deep learning to enhance cancer diagnosis and classification. In 30th International Conference on Machine Learning (ICML 2013). WHEALTH Workshop.
4. Xiong, H. Y., Alipanahi, B., Lee, L. J., Bretschneider, H., Merico, D., Yuen, R. K., et al. (2015). The human splicing code reveals new insights into the genetic determinants of disease. Science, 347(6218), 1254806.
5. Hard, A., Rao, K., Mathews, R., Ramaswamy, S., Beaufays, F., Augenstein, S., Eichner, H., Kiddon, C., & Ramage, D. (2018). Federated learning for mobile keyboard prediction. arXiv:1811.03604 Google AI.