1. Bremner, A., Jones, J.: On the equation $$x^4+y^4+mx^2y^2=z^2$$. J. Number Theory 50, 286–298 (1995)
2. Brown, E.: $$x^4+y^4+mx^2y^2=z^2$$: some cases with only trivial solutions - and a solution Euler missed. Glasgow Math. J. 31, 297–307 (1989)
3. Euler, L.: De casibus quibus formulam $$x^4 + mxxyy + y^4$$ ad quadratum reducere licet. Mem. Acad. Sci. St. Petersbourg 7 (1815/16, 1820), 10-22
4. Opera Omnia, ser. I, V, 35-47, Geneva (1944)
5. Kolyvagin, V.A.: On the mordell-weil group and the shafarevich-tate group of modular elliptic curves. In: Proceedings of the International Congress of Mathematicians, Kyoto, Japan, pp. 429–436 (1990)