Advancements in CdZnTe Detectors: Overcoming Challenges Through Physical and Digital Correction Techniques
Author:
Chaudhuri Sandeep K.,Mandal Krishna C.
Publisher
Springer Nature Switzerland
Reference56 articles.
1. Chaudhuri, S. K., & Mandal, K. (2022). In K. Iniewski (Ed.), Advanced materials for radiation detection (pp. 211–234). Springer. 2. Veale, M. C., Bell, S., Cline, B. D., Church, I., Cross, S., Day, C., French, M., Gardiner, T., Ghorbanian, N., Hart, M. D., Jones, L. L., Lipp, J., Nicholls, T., Nobes, J., Prydderch, M., Schneider, A., Seller, P., Sole, D., Wilson, M. D., Dhamgaye, V., Fox, O., & Sawhney, K. (2023). Preliminary characterisation of the HEXITECMHz spectroscopic X-ray imaging detector. Journal of Instrumentation, 18, P07048. 3. Schlesinger, T. E., Toney, J. E., Yoon, H., Lee, E. Y., Brunett, B. A., Franks, L., & James, R. B. (2001). Cadmium zinc telluride and its use as a nuclear radiation detector material. Materials Science and Engineering, 32, 103–189. 4. Bell, S. J., Baker, M. A., Duarte, D. D., Schneider, A., Seller, P., Sellin, P. J., Veale, M. C., & Wilson, M. D. (2017). Performance comparison of small-pixel CdZnTe radiation detectors with gold contacts formed by sputter and electroless deposition. Journal of Instrumentation, 12, 06015. 5. Szeles, C. (2004). CdZnTe and CdTe materials for X-ray and gamma ray radiation detector applications. Physica Status Solidi B, 241, 783–790.
|
|