Author:
Bouzeraib Wayoud,Ghenai Afifa,Zeghib Nadia
Publisher
Springer International Publishing
Reference44 articles.
1. Chandola, V., Mithal, V., Kumar, V.: Comparative evaluation of anomaly detection techniques for sequence data. In: Proceedings - IEEE International Conference on Data Mining, ICDM, pp. 743–748 (2008)
2. Almi’ani, M., Abu Ghazleh, A., Al-rahayfeh, A., Atiewi, S., Razaque, A.: Deep Recurrent Neural Network For IoT Intrusion Detection System. Simulation Modelling Practice and Theory. 101, 102031 (2019) https://doi.org/10.1016/j.simpat.2019.102031
3. Di Mattia, F., Galeone, P., De Simoni, M., Ghelfi, E.: A Survey on GANs for Anomaly Detection. (2019) http://arxiv.org/abs/1906.11632
4. Yang, Y., Zheng, K., Wu, C., Yang, Y.: Improving the classification effectiveness of intrusion detection by using improved conditional variational autoencoder and deep neural network. Sensors 19(11), 2528 (2019). https://doi.org/10.3390/s19112528
5. He, H., Garcia, E.A.: Learning from imbalanced data. IEEE Trans. Knowledge Data Eng. 21(9), 1263–1284 (2009)