1. Adkisson, M., Kimmell, J.C., Gupta, M., Abdelsalam, M.: Autoencoder-based anomaly detection in smart farming ecosystem. In: 2021 IEEE International Conference on Big Data (Big Data), pp. 3390–3399 (2021)
2. de Araujo Zanella, A.R., et al.: CEIFA: a multi-level anomaly detector for smart farming. Comput. Electron. Agric. 202, 107279 (2022)
3. Arthur, D., Vassilvitskii, S.: k-means++: the advantages of careful seeding. In: SODA 2007, Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1027–1035. Society for Industrial and Applied Mathematics, USA (2007)
4. Barz, B., et al.: Detecting regions of maximal divergence for spatio-temporal anomaly detection. IEEE Trans. Pattern Anal. Mach. Intell. 41, 1088–1101 (2018)
5. Berndt, D.J., Clifford, J.: Using dynamic time warping to find patterns in time series. In: Aaaiws 1994, Proceedings of the 3rd International Conference on Knowledge Discovery and Data Mining, pp. 359–370. AAAI Press (1994)