Abstract
AbstractWe propose a data-driven algorithm for numerical invariant synthesis and verification. The algorithm is based on the ICE-DT schema for learning decision trees from samples of positive and negative states and implications corresponding to program transitions. The main issue we address is the discovery of relevant attributes to be used in the learning process of numerical invariants. We define a method for solving this problem guided by the data sample. It is based on the construction of a separator that covers positive states and excludes negative ones, consistent with the implications. The separator is constructed using an abstract domain representation of convex sets. The generalization mechanism of the decision tree learning from the constraints of the separator allows the inference of general invariants, accurate enough for proving the targeted property. We implemented our algorithm and showed its efficiency.
Publisher
Springer International Publishing
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Neural Solving Uninterpreted Predicates with Abstract Gradient Descent;ACM Transactions on Software Engineering and Methodology;2024-07-02
2. DeepIC3: Guiding IC3 Algorithms by Graph Neural Network Clause Prediction;2024 29th Asia and South Pacific Design Automation Conference (ASP-DAC);2024-01-22