A Scalable Shannon Entropy Estimator

Author:

Golia Priyanka,Juba Brendan,Meel Kuldeep S.

Abstract

AbstractQuantified information flow (QIF) has emerged as a rigorous approach to quantitatively measure confidentiality; the information-theoretic underpinning of QIF allows the end-users to link the computed quantities with the computational effort required on the part of the adversary to gain access to desired confidential information. In this work, we focus on the estimation of Shannon entropy for a given program $$\varPi $$ Π . As a first step, we focus on the case wherein a Boolean formula $$\varphi (X,Y)$$ φ ( X , Y ) captures the relationship between inputs X and output Y of $$\varPi $$ Π . Such formulas $$\varphi (X,Y)$$ φ ( X , Y ) have the property that for every valuation to X, there exists exactly one valuation to Y such that $$\varphi $$ φ is satisfied. The existing techniques require $$\mathcal {O}(2^m)$$ O ( 2 m ) model counting queries, where $$m = |Y|$$ m = | Y | .We propose the first efficient algorithmic technique, called $$\mathsf {EntropyEstimation}$$ EntropyEstimation to estimate the Shannon entropy of $$\varphi $$ φ with PAC-style guarantees, i.e., the computed estimate is guaranteed to lie within a $$(1\pm \varepsilon )$$ ( 1 ± ε ) -factor of the ground truth with confidence at least $$1-\delta $$ 1 - δ . Furthermore, $$\mathsf {EntropyEstimation}$$ EntropyEstimation makes only $$\mathcal {O}(\frac{min(m,n)}{\varepsilon ^2})$$ O ( m i n ( m , n ) ε 2 ) counting and sampling queries, where $$m = |Y|$$ m = | Y | , and $$n = |X|$$ n = | X | , thereby achieving a significant reduction in the number of model counting queries. We demonstrate the practical efficiency of our algorithmic framework via a detailed experimental evaluation. Our evaluation demonstrates that the proposed framework scales to the formulas beyond the reach of the previously known approaches.

Publisher

Springer International Publishing

Reference59 articles.

1. QBF solver evaluation portal 2017. http://www.qbflib.org/qbfeval17.php

2. QBF solver evaluation portal 2018. http://www.qbflib.org/qbfeval18.php

3. Lecture Notes in Computer Science;D Achlioptas,2018

4. Lecture Notes in Computer Science;A Aydin,2015

5. Aydin, A., et al.: Parameterized model counting for string and numeric constraints. In: Proceedings of ESEC/FSE, pp. 400–410 (2018)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3