Author:
de Castro Moreira Gabriel,Costa João Felipe Coimbra Leite,Marques Diego Machado
Abstract
AbstractMachine learning is a broad field of study that can be applied in many areas of science. In mining, it has already been used in many cases, for example, in the mineral sorting process, in resource modeling, and for the prediction of metallurgical variables. In this paper, we use for defining estimation domains, which is one of the first and most important steps to be taken in the entire modeling process. In unsupervised learning, cluster analysis can provide some interesting solutions for dealing with the stationarity in defining domains. However, choosing the most appropriate technique and validating the results can be challenging when performing cluster analysis because there are no predefined labels for reference. Several methods must be used simultaneously to make the conclusions more reliable. When applying cluster analysis to the modeling of mineral resources, geological information is crucial and must also be used to validate the results. Mining is a dynamic activity, and new information is constantly added to the database. Repeating the whole clustering process each time new samples are collected would be impractical, so we propose using supervised learning algorithms for the automatic classification of new samples. As an illustration, a dataset from a phosphate and titanium deposit is used to demonstrate the proposed workflow. Automating methods and procedures can significantly increase the reproducibility of the modeling process, an essential condition in evaluating mineral resources, especially for auditing purposes. However, although very effective in the decision-making process, the methods herein presented are not yet fully automated, requiring prior knowledge and good judgment.
Publisher
Springer International Publishing