Abstract
AbstractReasoning with uncertain data is a central task in artificial intelligence. In some cases, the goal is to find the most likely assignment to a subset of random variables, named query variables, while some other variables are observed. This task is called Maximum a Posteriori (MAP). When the set of query variables is the complement of the observed variables, the task goes under the name of Most Probable Explanation (MPE). In this paper, we introduce the definitions of cautious and brave MAP and MPE tasks in the context of Probabilistic Answer Set Programming under the credal semantics and provide an algorithm to solve them. Empirical results show that the brave version of both tasks is usually faster to compute. On the brave MPE task, the adoption of a state-of-the-art ASP solver makes the computation much faster than a naive approach based on the enumeration of all the worlds.
Publisher
Springer International Publishing
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献