MAP Inference in Probabilistic Answer Set Programs

Author:

Azzolini DamianoORCID,Bellodi ElenaORCID,Riguzzi FabrizioORCID

Abstract

AbstractReasoning with uncertain data is a central task in artificial intelligence. In some cases, the goal is to find the most likely assignment to a subset of random variables, named query variables, while some other variables are observed. This task is called Maximum a Posteriori (MAP). When the set of query variables is the complement of the observed variables, the task goes under the name of Most Probable Explanation (MPE). In this paper, we introduce the definitions of cautious and brave MAP and MPE tasks in the context of Probabilistic Answer Set Programming under the credal semantics and provide an algorithm to solve them. Empirical results show that the brave version of both tasks is usually faster to compute. On the brave MPE task, the adoption of a state-of-the-art ASP solver makes the computation much faster than a naive approach based on the enumeration of all the worlds.

Publisher

Springer International Publishing

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Proceedings 39th International Conference on Logic Programming;Electronic Proceedings in Theoretical Computer Science;2023-09-12

2. A Constrained Optimization Approach to Set the Parameters of Probabilistic Answer Set Programs;Inductive Logic Programming;2023

3. Inference in Probabilistic Answer Set Programming Under the Credal Semantics;AIxIA 2023 – Advances in Artificial Intelligence;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3