1. Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: a next-generation hyperparameter optimization framework. In: Teredesai, A., Kumar, V., Li, Y., Rosales, R., Terzi, E., Karypis, G. (eds.) Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD 2019, Anchorage, AK, USA, 4–8 August 2019, pp. 2623–2631. ACM (2019)
2. Basile, V., Novielli, N., Croce, D., Barbieri, F., Nissim, M., Patti, V.: Sentiment polarity classification at EVALITA: lessons learned and open challenges. IEEE Trans. Affect. Comput. 12(2), 466–478 (2021)
3. Bird, S., Klein, E., Loper, E.: Natural Language Processing with Python: Analyzing Text with the Natural Language Toolkit. O’Reilly Media Inc., Sebastopol (2009)
4. Croce, D., Zelenanska, A., Basili, R.: Neural learning for question answering in Italian. In: Ghidini, C., Magnini, B., Passerini, A., Traverso, P. (eds.) AI*IA 2018 - Advances in Artificial Intelligence, pp. 389–402. Springer International Publishing, Cham (2018). https://doi.org/10.1007/978-3-030-03840-3_29
5. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Burstein, J., Doran, C., Solorio, T. (eds.) Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, 2–7 June 2019, vol. 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics (2019)