1. AI Fairness 360 - Resources. https://aif360.mybluemix.net/resources#guidance
2. Agarwal, A., Beygelzimer, A., Dudík, M., Langford, J., Wallach, H.: A reductions approach to fair classification. arXiv:1803.02453 [cs], July 2018. arXiv: 1803.02453
3. Angwin, J., Larson, J., Mattu, S., Kirchner, L.: Machine Bias. ProPublica, pp. 139–159, 23 May 2016
4. Austin, K.A., Christopher, C.M., Dickerson, D.: Will I pass the bar exam: Will I pass the bar exam: predicting student success using LSAT scores and law school performance. HofstrA l. Rev. 45, 753 (2016)
5. Bird, S., et al.: Fairlearn: a toolkit for assessing and improving fairness in AI. Tech. Rep. MSR-TR-2020-32, Microsoft, May 2020. https://www.microsoft.com/en-us/research/publication/fairlearn-a-toolkit-for-assessing-and-improving-fairness-in-ai/