Publisher
Springer Nature Switzerland
Reference27 articles.
1. Huang, K., Krügener, M., Brown, A., Menhorn, F., Bungartz, H.J., Hartmann, D.: Machine Learning-Based Optimal Mesh Generation in Computational Fluid Dynamics. ArXiv, pp. 1–22 (2021). https://arxiv.org/abs/2102.12923
2. Iserte, S., Macías, A., Martínez-Cuenca, R., Chiva, S., Paredes, R., Quintana-Ortí, E.S.: Accelerating urban scale simulations leveraging local spatial 3D structure. J. Comput. Sci. 62, 101741 (2022)
3. Kim, B., Azevedo, V.C., Thuerey, N., Kim, T., Gross, M., Solenthaler, B.: Deep fluids: a generative network for parameterized fluid simulations. Comput. Graph. Forum 38(2), 59–70 (2019)
4. Kochkov, D., Smith, J.A., Alieva, A., Wang, Q., Brenner, M.P., Hoyer, S.: Machine learning-accelerated computational fluid dynamics. Proceed. Nat. Acad. Sci. 118(21), e2101784118 (2021). https://doi.org/10.1073/pnas.2101784118. https://www.pnas.org/doi/abs/10.1073/pnas.2101784118
5. Kurz, M., Offenhäuser, P., Viola, D., Shcherbakov, O., Resch, M., Beck, A.: Deep reinforcement learning for computational fluid dynamics on HPC systems. J. Comput. Sci. 65, 101884 (2022). https://doi.org/10.1016/j.jocs.2022.101884. https://www.sciencedirect.com/science/article/pii/S1877750322002435
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献