1. Ando, R.K., Zhang, T.: A framework for learning predictive structures from multiple tasks and unlabeled data. J. Mach. Learn. Res. 6, 1817–1853 (2005). http://jmlr.org/papers/v6/ando05a.html
2. Bikel, D.M., Miller, S., Schwartz, R., Weischedel, R.: NYMBLE: a high-performance learning name-finder. In: Fifth Conference on Applied Natural Language Processing, pp. 194–201. Association for Computational Linguistics, Washington, DC, March 1997. https://doi.org/10.3115/974557.974586, https://aclanthology.org/A97-1029
3. Borthwick, A., Sterling, J., Agichtein, E., Grishman, R.: Exploiting diverse knowledge sources via maximum entropy in named entity recognition. In: Charniak, E. (ed.) Sixth Workshop on Very Large Corpora, VLC@COLING/ACL 1998, Montreal, Quebec, Canada, 15–16 August 1998 (1998). https://aclanthology.org/W98-1118/
4. Chen, H., Yuan, S., Zhang, X.: Rose-NER: robust semi-supervised named entity recognition on insufficient labeled data. In: The 10th International Joint Conference on Knowledge Graphs. IJCKG 2021, pp. 38–44. Association for Computing Machinery, New York (2021). https://doi.org/10.1145/3502223.3502228
5. Lecture Notes in Computer Science;T Douzon,2022