1. Brock, A., De, S., Smith, S.L., Simonyan, K.: High-performance large-scale image recognition without normalization. In: 38th International Conference on Machine Learning (ICML), Virtual Event. Proceedings of Machine Learning Research, vol. 139, pp. 1059–1071. PMLR (2021). http://proceedings.mlr.press/v139/brock21a.html
2. Conde, M.V., Choi, U.: Few-shot long-tailed bird audio recognition. In: Proceedings of the Working Notes of CLEF 2022 - Conference and Labs of the Evaluation Forum, Bologna, Italy. CEUR Workshop Proceedings, vol. 3180, pp. 2036–2046. CEUR-WS.org (2022). http://ceur-ws.org/Vol-3180/paper-161.pdf
3. Disabato, S., Canonaco, G., Flikkema, P.G., Roveri, M., Alippi, C.: Birdsong detection at the edge with deep learning. In: IEEE International Conference on Smart Computing (SMARTCOMP), Irvine, CA, USA. pp. 9–16. IEEE (2021). https://doi.org/10.1109/SMARTCOMP52413.2021.00022
4. Gallacher, S., Wilson, D., Fairbrass, A., Turmukhambetov, D., Firman, M., Kreitmayer, S., Mac Aodha, O., Brostow, G., Jones, K.: Shazam for bats: Internet of things for continuous real-time biodiversity monitoring. IET Smart Cities 3(3), 171–183 (2021). https://doi.org/10.1049/smc2.12016
5. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016). https://doi.org/10.1109/CVPR.2016.90