1. H.H. Bauschke, P.L. Combettes, A weak-to-strong convergence principle for fejer-monotone methods in Hilbert spaces, Math. Oper. Res. 26(2001), 248–264.
2. V. Berinde, Iterative approximation of fixed points, Springer, 2006.
3. E. Blum, W. Oettli, From optimization and variational inequalities to equilibrium problems, The Mathematics Student 63 (1994), 123–145.
4. R.I. Bot, E.R. Csetnek, D. Meier, Inducing strong convergence into the asymptotic behaviour of proximal splitting algorithms in Hilbert spaces, Optim. Methods Softw. 34(2019), 489–514.
5. C.E. Chidume, Geometric properties of Banach spaces and nonlinear iterations, Springer Verlag Series: Lecture Notes in Mathematics, Vol. 1965 (2009) XVII, 326 pp. ISBN 978-1-84882-189-7.