Publisher
Springer Nature Switzerland
Reference47 articles.
1. Alwosheel, A., Van Cranenburgh, S., Chorus, C.G.: Why did you predict that? Towards explainable artificial neural networks for travel demand analysis. Transp. Res. C Emerg. Technol. 128, 103143 (2021). https://doi.org/10.1016/j.trc.2021.103143
2. Anders, C.J., Neumann, D., Samek, W., Müller, K.R., Lapuschkin, S.: Software for Dataset-wide XAI: From Local Explanations to Global Insights with Zennit, CoRelAy, and ViRelAy, February 2023
3. Apley, D.W., Zhu, J.: Visualizing the effects of predictor variables in black box supervised learning models. J. R. Stat. Soc. Ser. B Stat Methodol. 82(4), 1059–1086 (2020). https://doi.org/10.1111/rssb.12377
4. Arias-Duart, A., Pares, F., Garcia-Gasulla, D., Gimenez-Abalos, V.: Focus! Rating XAI methods and finding biases. In: 2022 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Padua, Italy, pp. 1–8. IEEE, July 2022. https://doi.org/10.1109/FUZZ-IEEE55066.2022.9882821
5. Arras, L., Osman, A., Samek, W.: CLEVR-XAI: a benchmark dataset for the ground truth evaluation of neural network explanations. Inf. Fusion 81, 14–40 (2022). https://doi.org/10.1016/j.inffus.2021.11.008