1. Arthur, D., & Vassilvitskii, S. (2007). k-Means++: The advantages of careful seeding. In SODA ’07: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms (pp. 1027–1035).
2. Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent Dirichlet allocation. Journal of Machine Learning Research, 3, 993–1022.
3. Bottou, L., & Bengio, Y. (1995). Convergence properties of the k-means algorithms. In G. Tesauro, D. Touretzky, & T. Leen (Eds.), Advances in neural information processing systems (Vol. 7). MIT Press.
4. Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.
5. Chen, C., Liu, Y., & Peng, L. (2019). How to develop machine learning models for healthcare. Nature Materials, 18, 410–414.