1. Rawat, J., Singh, A., Bhadauria, H.S., Virmani, J., Devgun, J.S.: Classification of acute lymphoblastic leukemia using hybrid hierarchical classifiers. Multimedia Tools Appl. Int. J. ISSN 1380-7501 (30 August 2016). Clerk Maxwell, J.: A Treatise on Electricity and Magnetism, 3rd ed., vol. 2, pp.68–73. Oxford, Clarendon (1892)
2. Donida Labati, R., Piuri, V., Scotti, F.: ALL-IDB: the acute lymphoblastic leukemia image database for image processing. In: Proceeding of the 2011 IEEE International Conference on Image Processing (ICIP 2011), Brussels, Belgium, September 11–14, pp. 2045−2048 (2011). ISBN: 978-1-4577-1302-6
3. Al-Jaboriy, S.S., Sjarif, N.N.A., Chuprat, S.: Segmentation and Detection of acute leukemia using image processing and machine learning techniques: a review, September 2019. In: K. Elissa, Title of Paper if Known (unpublished)
4. Selvaraj, S., Kanakaraj, B.: Näive Bayesian classifier for acute lymphocytic leukemia detection. In: Department of Biomedical Engineering, P.S.N.A College of Engineering and Technology, Dindigul, Tamilnadu, India 2K. P.R. Institute of Engineering and Technology, Coimbatore, India.
5. Bhuvana, D., Dr. Bhagavathi Sivakumar P.: Brain tumor detection and classification in MRI images using probabilistic neural networks. In: Proceedings of the Second International Conference on Emerging Research in Computing, Information, Communication, and Applications (ERICA-14) (2014)