1. Parhi, D.R., Singh, M.K.: Rule-based hybrid neural network for navigation of a wheelchair. Proc. IMechE Part B J. Eng. Manuf. 224, 11103–11117 (2009)
2. Sanders, D.A., Gegov, A., Ndzi, D.: Knowledge-based expert system using a set of rules to assist a tele-operated mobile robot. In: Bi, Y., Kapoor, S., Bhatia, R. (eds.) Studies in Computational Intelligence, vol. 751, pp. 371–392. Springer (2018)
3. Sanders, D.A., et al.: Rule-based system to assist a tele-operator with driving a mobile robot. In: Lecture Notes in Networks and Systems, vol. 16, pp. 599–615. Springer (2018)
4. Sanders, D., Langner, M., Bausch, N., Huang, Y., Khaustov, S.A., Simandjuntak, S.: Improving human-machine interaction for a powered wheelchair driver by using variable-switches and sensors that reduce wheelchair-veer. In: Bi, Y., Bhatia, R., Kapoor, S. (eds.) Advances in Intelligent Systems and Computing, vol. 1038, pp. 1173–1191. Springer, Cham (2019)
5. Okonor, O.M., Gegov, A., Adda, M., Sanders, D., Haddad, M.J.M., Tewkesbury, G.: Intelligent approach to minimizing power consumption in a cloud-based system collecting sensor data and monitoring the status of powered wheelchairs. In: Bi, Y., Bhatia, R., Kapoor, S. (eds.) Advances in Intelligent Systems and Computing, vol. 1037, pp. 694–710. Springer, Cham (2019)