Author:
Augustino Brandon,Terlaky Tamás
Publisher
Springer International Publishing
Reference39 articles.
1. Abernethy J, Hazan E (2016) Faster convex optimization: simulated annealing with an efficient universal barrier. In: International Conference on Machine Learning. PMLR, pp 2520–2528
2. Alizadeh F, Haeberly J-PA, Overton ML (1998) Primal-dual interior-point methods for semidefinite programming: convergence rates, stability and numerical results. SIAM J Optim 8(3):746–768
3. Anjos MF, Lasserre JB (2012) Handbook on semidefinite, conic and polynomial optimization, vol 166. In: ISOR. Springer Science & Business Media, Springer New York, NY
4. Augustino B, Nannicini G, Terlaky T, Zuluaga LF (2023) Quantum interior point methods for semidefinite optimization 7:1110, Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften arXiv preprint arXiv:2112.06025
5. Badenbroek R, de Klerk E (2022) Simulated annealing for convex optimization: rigorous complexity analysis and practical perspectives. J Optim Theory Appl 194(2):465–491