1. Ainsworth, S., Hayase, J., Srinivasa, S.: Git re-basin: merging models modulo permutation symmetries. In: The Eleventh International Conference on Learning Representations (2023)
2. Akash, A.K., Li, S., Trillos, N.G.: Wasserstein barycenter-based model fusion and linear mode connectivity of neural networks (2022)
3. Altschuler, J.M., Boix-Adserà, E.: Wasserstein barycenters are NP-hard to compute. SIAM J. Math. Data Sci. 4(1), 179–203 (2022)
4. Ba, J.L., Kiros, J.R., Hinton, G.E.: Layer normalization (2016)
5. Benzing, F., et al.: Random initialisations performing above chance and how to find them. In: OPT 2022: Optimization for Machine Learning (NeurIPS 2022 Workshop) (2022)