1. Amari, S.I.: Natural gradient works efficiently in learning. Neural Comput. 10(2), 251–276 (1998)
2. Arthur, D., Vassilvitskii, S., et al.: K-means++: the advantages of careful seeding. In: ACM-SIAM Symposium on Discrete algorithms (2007)
3. Ash, J.T., Goel, S., Krishnamurthy, A., Kakade, S.: Gone fishing: neural active learning with fisher embeddings. In: Advances in Neural Information Processing Systems (2021)
4. Ash, J.T., Zhang, C., Krishnamurthy, A., Langford, J., Agarwal, A.: Deep batch active learning by diverse, uncertain gradient lower bounds. In: International Conference on Learning Representations (2020)
5. Bahri, D., Jiang, H., Schuster, T., Rostamizadeh, A.: Is margin all you need? An extensive empirical study of active learning on tabular data. arXiv preprint arXiv:2210.03822 (2022)