Foundations of Causal ML

Author:

Kummerfeld Erich,Andrews Bryan,Ma Sisi

Abstract

AbstractThe present chapter covers the important dimension of causality in ML both in terms of causal structure discovery and causal inference. The vast majority of biomedical ML focuses on predictive modeling and does not address causal methods, their requirements and properties. Yet these are essential for determining and assisting patient-level or healthcare-level interventions toward improving a set of outcomes of interest. Moreover causal ML techniques can be instrumental for health science discovery.

Publisher

Springer International Publishing

Reference42 articles.

1. Pearl J. Causality. Cambridge University Press; 2009.

2. Spirtes P, Glymour CN, Scheines R. Causation, prediction, and search. MIT Press; 2000.

3. Kummerfeld E, Ramsey J. Causal clustering for 1-factor measurement models. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ‘16. New York, NY, USA: ACM; 2016. p. 1655–64.

4. Kummerfeld E, Ramsey J, Yang R, Spirtes P, Scheines R. Causal clustering for 2-factor measurement models. In: Calders T, Esposito F, Hullermeier E, Meo R, editors. Machine learning and knowledge discovery in databases, volume 8725 of Lecture notes in computer science. Berlin, Heidelberg: Springer; 2014. p. 34–49.

5. Kaplan D. Structural equation modeling: foundations and extensions, vol. 10. Sage Publications; 2008.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3