Author:
Xu Zihang,Gong Haifan,Wan Xiang,Li Haofeng
Publisher
Springer Nature Switzerland
Reference30 articles.
1. Al Chanti, D., Mateus, D.: OLVA: Optimal latent vector alignment for unsupervised domain adaptation in medical image segmentation. In: de Bruijne, M., et al. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2021: 24th International Conference, Strasbourg, France, September 27–October 1, 2021, Proceedings, Part III, pp. 261–271. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87199-4_25
2. Benkarim, O.M., et al.: Toward the automatic quantification of in utero brain development in 3D structural MRI: a review: quantification of fetal brain development. Hum. Brain Mapp. 38(5), 2772–2787 (2017)
3. Chen, C., Dou, Q., Chen, H., Qin, J., Heng, P.A.: Unsupervised bidirectional cross-modality adaptation via deeply synergistic image and feature alignment for medical image segmentation. IEEE Trans. Med. Imaging 39(7), 2494–2505 (2020)
4. De Asis-Cruz, J., Andescavage, N., Limperopoulos, C.: Adverse prenatal exposures and fetal brain development: insights from advanced fetal magnetic resonance imaging. Biol. Psychiatry: Cogn. Neurosci. Neuroimaging 7(5), 480–490 (2022)
5. Fidon, L., et al.: A spatio-temporal atlas of the developing fetal brain with spina bifida aperta. Open Res. Eur. 1, 123 (2022)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献