1. Jia, R., Hong, G., Xue, J., Cui, J.: Application of particle swarm optimization-least square support vector machine algorithm in mechanical fault diagnosis of high-voltage circuit breaker. Power Syst. Technol. 34(3), 197–200 (2010)
2. Mei, F., Mei, J., Zheng, J., Zhang, S., Zhu, K.: Application of particle swarm fused KFCM and classification model of SVM for fault diagnosis of circuit breaker. Proc. CSEE 33(36), 134–141 (2013)
3. Xu, J., Zhang, B., Lin, X., Li, B., Teng, Y.: Application of energy spectrum entropy vector method and RBF neural networks optimized by the particle swarm in high-voltage circuit breaker mechanical fault diagnosis. High Volt. Eng. 38(6), 1299–1306 (2012)
4. Sun, Y., Wu, J., Lian, S., Zhang, L.: Extraction of vibration signal feature vector of circuit breaker based on empirical mode decomposition amount of energy. Trans. China Electrotech. Soc. 29(3), 228–236 (2014)
5. Huang, J., Hu, X., Gong, Y.: Machinery fault diagnosis of high voltage circuit breaker based on empirical mode decomposition. Proc. CSEE 31(12), 108–113 (2011)