1. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous systems (2015).
http://tensorflow.org/
2. Burges, C., et al.: Learning to rank using gradient descent. In: Proceedings of the 22nd International Conference on Machine Learning, ICML 2005, pp. 89–96. ACM, New York (2005).
http://doi.acm.org/10.1145/1102351.1102363
3. Burges, C., Ragno, R., Le, Q., Burges, C.J.: Learning to rank with non-smooth cost functions. In: Advances in Neural Information Processing Systems 19. MIT Press, Cambridge, January 2007.
https://www.microsoft.com/en-us/research/publication/learning-to-rank-with-non-smooth-cost-functions/
4. Cao, Y., Xu, J., Liu, T.Y., Li, H., Huang, Y., Hon, H.W.: Adapting ranking SVM to document retrieval. In: Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 186–193. ACM (2006).
https://doi.org/10.1145/1148170.1148205
5. Cao, Z., Qin, T., Liu, T.Y., Tsai, M.F., Li, H.: Learning to rank: from pairwise approach to listwise approach, p. 9, April 2007.
https://www.microsoft.com/en-us/research/publication/learning-to-rank-from-pairwise-approach-to-listwise-approach/