1. Alon, N., Matias, Y., Szegedy, M.: The space complexity of approximating the frequency moments. J. Comput. Syst. Sci. 58(1), 137–147 (1999)
2. Andoni, A., Lin, C., Sheng, Y., Zhong, P., Zhong, R.: Subspace embedding and linear regression with Orlicz norm. In: Proceedings of the 35th International Conference on Machine Learning, ICML, pp. 224–233 (2018)
3. Argyriou, A., Foygel, R., Srebro, N.: Sparse prediction with the $$k$$-support norm. In: Advances in Neural Information Processing Systems 25: Annual Conference on Neural Information Processing Systems, pp. 1466–1474 (2012)
4. Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Models and issues in data stream systems. In: Proceedings of the Twenty-first ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, pp. 1–16 (2002)
5. Blasiok, J., Braverman, V., Chestnut, S.R., Krauthgamer, R., Yang, L.F.: Streaming symmetric norms via measure concentration. In: Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC, pp. 716–729 (2017)