1. Anh, T.T., Long, H.P., Dung, L.D., Thang, T.N.: A framework for controllable pareto front learning with completed scalarization functions and its applications. arXiv preprint: arXiv:2302.12487 (2023)
2. Chen, Z., Badrinarayanan, V., Lee, C.Y., Rabinovich, A.: GradNorm: gradient normalization for adaptive loss balancing in deep multitask networks. In: International Conference on Machine Learning, pp. 794–803. PMLR (2018)
3. Chen, Z., et al.: Just pick a sign: optimizing deep multitask models with gradient sign dropout. In: Advances in Neural Information Processing Systems, vol. 33, pp. 2039–2050 (2020)
4. Désidéri, J.A.: Multiple-gradient descent algorithm (MGDA) for multiobjective optimization. C.R. Math. 350(5–6), 313–318 (2012)
5. Lin, X., Zhen, H.L., Li, Z., Zhang, Q.F., Kwong, S.: Pareto multi-task learning. In: Advances in Neural Information Processing Systems, vol. 32 (2019)