Genomic Insights on Global Journeys of Adaptive Wheat Genes that Brought Us to Modern Wheat

Author:

Sehgal Deepmala,Dixon Laura,Pequeno Diego,Hyles Jessica,Lacey Indi,Crossa Jose,Bentley Alison,Dreisigacker Susanne

Abstract

AbstractSince its first cultivation, hexaploid wheat has evolved, allowing for its widespread cultivation and contributing to global food security. The identification of adaptive genes, such as vernalization and photoperiod response genes, has played a crucial role in optimizing wheat production, being instrumental in fine-tuning flowering and reproductive cycles in response to changing climates and evolving agricultural practices. While these adaptive genes have expanded the range of variation suitable for adaptation, further research is needed to understand their mechanisms, dissect the pathways involved, and expedite their implementation in breeding programs. By analyzing data across different environments and over time, Meta-QTL analysis can help identify novel genomic regions and facilitate the discovery of new candidate genes. This chapter reports on two previously unknown Meta-QTL regions, highlighting the potential for further exploration in this field. Moving forward, it will be increasingly important to expand our understanding of how genetic regions influence not only flowering time but also other developmental traits and their responses to environmental factors. Advances in gene-based modeling hold promise for describing growth and development processes using QTL and other genomic loci analysis. Integrating these findings into process-based crop models can provide valuable insights for future research. Overall, the study of adaptive genes and their impact on wheat production represents a vital area of research that continues to contribute to global food security.

Publisher

Springer International Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3