1. Aslay, Ç., O’Hare, N., Aiello, L.M., Jaimes, A.: Competition-based networks for expert finding. In: Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 1033–1036 (2013)
2. Bassani, E.: ranx: a blazing-fast python library for ranking evaluation and comparison. In: Hagen, M., et al. (eds.) ECIR (2). Lecture Notes in Computer Science, vol. 13186, pp. 259–264. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-030-99739-7_30
3. Bergstra, J., Yamins, D., Cox, D.D.: Making a science of model search: Hyperparameter optimization in hundreds of dimensions for vision architectures. In: Proceedings of the 30th International Conference on International Conference on Machine Learning, ICML 2013, vol. 28, pp. I-115–I-123. JMLR.org (2013)
4. Burges, C.J.: From ranknet to lambdarank to lambdamart: an overview. Learning 11(23–581), 81 (2010)
5. Nobari, A.D., Gharebagh, S.S., Neshati, M.: Skill translation models in expert finding. In: Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 1057–1060 (2017)