1. Abdelrazek, M., Purificato, E., Boratto, L., De Luca, E.W.: FairUP: a framework for fairness analysis of graph neural network-based user profiling models. In: Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR, p. 3165-3169. SIGIR 2023, ACM (2023)
2. Anelli, V.W., Deldjoo, Y., Noia, T.D., Malitesta, D., Paparella, V., Pomo, C.: Auditing consumer- and producer-fairness in graph collaborative filtering. In: Proceedings of the 45th European Conference on Information Retrieval, ECIR. LNCS, vol. 13980, pp. 33–48. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-28244-7_3
3. Anelli, V.W., et al.: How neighborhood exploration influences novelty and diversity in graph collaborative filtering. In: Proceedings of the 2nd Workshop on Multi-Objective Recommender Systems co-located with 16th ACM Conference on Recommender Systems, RecSys. CEUR Workshop Proceedings, vol. 3268. CEUR-WS.org (2022)
4. Anelli, V.W., Malitesta, D., Pomo, C., Bellogín, A., Sciascio, E.D., Noia, T.D.: Challenging the myth of graph collaborative filtering: a reasoned and reproducibility-driven analysis. In: Proceedings of the 17th ACM Conference on Recommender Systems, RecSys, pp. 350–361. ACM (2023)
5. Balloccu, G., Boratto, L., Cancedda, C., Fenu, G., Marras, M.: Faithful path language modelling for explainable recommendation over knowledge graph. CoRR abs/2310.16452arXiv:2310.16452 (2023)