1. Beltagy, I., Peters, M.E., Cohan, A.: Longformer: The long-document transformer. CoRR abs/2004.05150 (2020), https://arxiv.org/abs/2004.05150
2. Chen, M., Chu, Z., Wiseman, S., Gimpel, K.: Summscreen: a dataset for abstractive screenplay summarization. In: Muresan, S., Nakov, P., Villavicencio, A. (eds.) Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2022, Dublin, Ireland, May 22–27, 2022, pp. 8602–8615. Association for Computational Linguistics (2022). https://doi.org/10.18653/v1/2022.acl-long.589
3. Ibrahim Altmami, N., El Bachir Menai, M.: Automatic summarization of scientific articles: a survey. J. King Saud Univ. - Computer and Information Sciences 34(4), 1011–1028 (2022). https://doi.org/10.1016/j.jksuci.2020.04.020
4. Kim, E., Yoo, T., Cho, G., Bae, S., Cheong, Y.G.: The CreativeSumm 2022 shared task: a two-stage summarization model using scene attributes. In: Mckeown, K. (ed.) Proceedings of The Workshop on Automatic Summarization for Creative Writing, pp. 51–56. Association for Computational Linguistics, Gyeongju, Republic of Korea (Oct 2022). https://aclanthology.org/2022.creativesumm-1.8
5. Kim, M., Ko, Y.: Multitask fine-tuning for passage re-ranking using bm25 and pseudo relevance feedback. IEEE Access 10, 54254–54262 (2022). https://doi.org/10.1109/ACCESS.2022.3176894