1. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Proceedings of the Advances in Neural Information Processing Systems, pp. 8024–8035 (2019)
2. Bian, J.W., Zhan, H., Wang, N., Chin, T.J., Shen, C., Reid, I.: Unsupervised depth learning in challenging indoor video: weak rectification to rescue. arXiv preprint arXiv:2006.02708 (2020)
3. Bian, J., et al.: Unsupervised scale-consistent depth and ego-motion learning from monocular video. In: Advances in Neural Information Processing Systems, pp. 35–45 (2019)
4. Bolya, D., Zhou, C., Xiao, F., Lee, Y.J.: YOLACT: real-time instance segmentation. In: Proceedings of the IEEE International Conference on the Computer Vision, pp. 9157–9166 (2019)
5. Boominathan, L., Kruthiventi, S., Babu, R.V.: CrowdNet: a deep convolutional network for dense crowd counting. In: Proceedings of the ACM International Conference on Multimedia, pp. 640–644. ACM (2016)