Augmenting Explainable Data-Driven Models in Energy Systems: A Python Framework for Feature Engineering

Author:

Wilfling Sandra

Abstract

AbstractData-driven modeling is an approach in energy systems modeling that has been gaining popularity. In data-driven modeling, machine learning methods such as linear regression, neural networks or decision-tree based methods are applied. While these methods do not require domain knowledge, they are sensitive to data quality. Therefore, improving data quality in a dataset is beneficial for creating machine learning-based models. The improvement of data quality can be implemented through preprocessing methods. A selected type of preprocessing is feature engineering, which focuses on evaluating and improving the quality of certain features inside the dataset. Feature engineering includes methods such as feature creation, feature expansion, or feature selection. In this work, a Python framework containing different feature engineering methods is presented. This framework contains different methods for feature creation, expansion and selection; in addition, methods for transforming or filtering data are implemented. The implementation of the framework is based on the Python library scikit-learn. The framework is demonstrated on a use case from energy demand prediction. A data-driven model is created including selected feature engineering methods. The results show an improvement in prediction accuracy through the engineered features.

Publisher

Springer Nature Switzerland

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3