1. Aggarwal, C.C., Kong, X., Gu, Q., Han, J., Yu, P.S.: Active learning: a survey. In: Data Classification: algorithms and Applications. CRC Press (2014). https://doi.org/10.1201/b17320-23
2. Amodei, D., Olah, C., Steinhardt, J., Christiano, P.F., Schulman, J., Mané, D.: Concrete problems in AI safety. CoRR abs/1606.06565 (2016). http://arxiv.org/abs/1606.06565
3. Bai, Z., Shangguan, W., Cai, B., Chai, L.: Deep reinforcement learning based high-level driving behavior decision-making model in heterogeneous traffic. 2019 Chinese Control Conference (CCC) (2019)
4. Brown, T.B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D.M., Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S., Radford, A., Sutskever, I., Amodei, D.: Language models are few-shot learners. In: Advances in Neural Information Processing Systems (2020)
5. Cabi, S., Colmenarejo, S.G., Novikov, A., Konyushova, K., Reed, S., Jeong, R., Zolna, K., Aytar, Y., Budden, D., Vecerik, M., Sushkov, O., Barker, D., Scholz, J., Denil, M., de Freitas, N., Wang, Z.: Scaling data-driven robotics with reward sketching and batch reinforcement learning. In: Proceedings of Robotics: Science and Systems (2020). https://doi.org/10.15607/RSS.2020.XVI.076