Author:
Ballet Stéphane,Rolland Robert
Publisher
Springer International Publishing
Reference13 articles.
1. Ballet, S., Le Brigand, D.: On the existence of non-special divisors of degree $$g$$ and $$g-1$$ in algebraic function fields over $$\mathbb{F}_q$$. J. Number Theory 116, 293–310 (2006)
2. Ballet, S., Le Brigand, D., Rolland, R.: On an application of the definition field descent of a tower of function fields. In: Proceedings of the Conference Arithmetic, Geometry and Coding Theory (AGCT 2005), vol. 21, pp. 187–203. Société Mathématique de France, sér. Séminaires et Congrès (2009)
3. Ballet, S., Pieltant, J.: Tower of algebraic function fields with maximal Hasse-Witt invariant and tensor rank of multiplication in any extension of $$\mathbb{F} _2$$ and $$\mathbb{F} _3$$. J. Pure Appl. Algebra 222(5), 1069–1086 (2018)
4. Ballet, S., Pieltant, J., Rambaud, M., Randriambololona, H., Rolland, R., Chaumine, J.: On the tensor rank of multiplication in finite extension of finite fields and related issues in algebraic geometry. Uspekhi Mat. Nauk 76, 31–94 (2021)
5. Ballet, S., Ritzenthaler, C., Rolland, R.: On the existence of dimension zero divisors in algebraic function fields defined over $$\mathbb{F} _q$$. Acta Arith. 143(4), 377–392 (2010)