1. Erol, K., Hendler, J.N., Nau, D.S.: HTN planning: complexity and expressivity. In: 12th National Conference on Artificial Intelligence (1994)
2. Fernandez, A., Garcia, S., Hernandez, F., Chawla, N.V.: SMOTE for learning from imbalanced data: progress and challenges, marking the 15-year anniversary. J. Artif. Intell. Res. 61, 863–905 (2018)
3. Folsom-Kovarik, J.T., Woods, A., Wray, R.E.: Designing an authorable scenario representation for instructor control over computationally tailored narrative in training. In: Proceedings of the 29th International FLAIRS Conference. AAAI Press, Key Largo (2016)
4. Graffeo, C., Benoit, T., Wray, R.E., Folsom-Kovarik, J.T.: Creating a scenario design workflow for dynamically tailored training in socio-cultural perception. In: Proceedings of the 2015 Cross-Cultural Decision Making Conference. Springer, Las Vegas (2015)
5. Haley, J., Hung, V., Bridgman, R., Timpko, N., Wray, R.E.: Low level entity state sequence mapping to high level behavior via a deep LSTM model. In: 20th International Conference on Artificial Intelligence, Las Vegas (2018)