Publisher
Springer Nature Switzerland
Reference21 articles.
1. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. In: 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015, Conference Track Proceedings (2015). http://arxiv.org/abs/1409.0473
2. Baheti, A., Ritter, A., Li, J., Dolan, B.: Generating more interesting responses in neural conversation models with distributional constraints. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 3970–3980. Association for Computational Linguistics (2018). http://aclweb.org/anthology/D18-1431
3. Gliwa, B., Mochol, I., Biesek, M., Wawer, A.: SAMSum corpus: a human-annotated dialogue dataset for abstractive summarization. In: Proceedings of the 2nd Workshop on New Frontiers in Summarization, pp. 70–79. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-5409, https://www.aclweb.org/anthology/D19-5409
4. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997). https://doi.org/10.1162/neco.1997.9.8.1735
5. Kedzie, C., McKeown, K.R., III, H.D.: Content selection in deep learning models of summarization. In: Riloff, E., Chiang, D., Hockenmaier, J., Tsujii, J. (eds.) Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, 31 October - 4 November 2018, pp. 1818–1828. Association for Computational Linguistics (2018). https://doi.org/10.18653/v1/d18-1208