Customization of Closed Captions via Large Language Models

Author:

Arroyo Chavez MarianaORCID,Thompson BernardORCID,Feanny MollyORCID,Alabi KafayatORCID,Kim MinchanORCID,Ming LuORCID,Glasser AbrahamORCID,Kushalnagar RajaORCID,Vogler ChristianORCID

Abstract

AbstractThis study investigates the feasibility of employing artificial intelligence and large language models (LLMs) to customize closed captions/subtitles to match the personal needs of deaf and hard of hearing viewers. Drawing on recorded live TV samples, it compares user ratings of caption quality, speed, and understandability across five experimental conditions: unaltered verbatim captions, slowed-down verbatim captions, moderately and heavily edited captions via ChatGPT, and lightly edited captions by an LLM optimized for TV content by AppTek, LLC. Results across 16 deaf and hard of hearing participants show a significant preference for verbatim captions, both at original speeds and in the slowed-down version, over those edited by ChatGPT. However, a small number of participants also rated AI-edited captions as best. Despite the overall poor showing of AI, the results suggest that LLM-driven customization of captions on a per-user and per-video basis remains an important avenue for future research.

Publisher

Springer Nature Switzerland

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3