Publisher
Springer Nature Switzerland
Reference16 articles.
1. Lagaris, I., Likas, A., Fotiadis, D.: Artificial neural networks for solving ordinary and partial differential equations. IEEE Trans. Neural Netw. 9(5), 987–1000 (1998)
2. Raissi, M., Perdikaris, P., Karniadakis, G.: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707 (2019)
3. Wang, Y., Lai, C., Gomez-Serrano, J., Buckmaster, T.: Asymptotic self-similar blow-up profile for three-dimensional axisymmetric Euler equations using neural networks. Phys. Rev. Lett. 130, 244002 (2023)
4. Li, W., Zhang C., Wang, C., et al.: Revisiting PINNs: a Generative Adversarial Physics-Informed Neural Networks and Point-Weighting Method (2022). arXiv Preprint, arXiv:2205.08754
5. McClenny, L., Braga-Neto, U.: Self-adaptive physics-informed neural networks using a soft attention mechanism. J. Comput. Phys. 474, 111722 (2022)