High Precision Peg-in-Hole Assembly Approach Based on Sensitive Robotics and Deep Recurrent Q-Learning

Author:

Afifi Nehal Atef,Schneider Marco,Kanso Ali,Müller Rainer

Abstract

AbstractSensitive robot systems are used in various assembly and manufacturing technologies. Assembly is a vital activity that requires high-precision robotic manipulation. One of the challenges faced in high precision assembly tasks is when the task precision exceeds the robot’s precision. In this research, Deep Q-Learning (DQN) is used to perform a very tight clearance Peg-in-Hole assembly task. Moreover, recurrence is introduced into the system via a Long-Short Term Memory (LSTM) layer to tackle DQN drawbacks. The LSTM layer has the ability to encode prior decisions, allowing the agent to make more informed decisions. The robot’s sensors are used to represent the state. Despite the tight hole clearance, this method was able to successfully achieve the task at hand, which has been validated by a 7-DOF Kuka LBR iiwa sensitive robot. This paper will focus on the search phase. Furthermore, our approach has the advantage of working in environments that vary from the learned environment.

Publisher

Springer International Publishing

Reference19 articles.

1. Vogel-Heuser, B., Bauernhansl, T., Ten Hompel, M.: Handbuch Industrie 4.0 Bd. 1. Springer, Berlin (2017)

2. Vogel-Heuser, B., Bauernhansl, T., Ten Hompel, M.: Handbuch Industrie 4.0 Bd. 2. Springer, Berlin (2017)

3. DIN 1319, Grundlagen der Messtechnik: Begriffe für Messmittel. (2005)

4. Lynch, K.M., Park, F.C.: Modern robotics. Cambridge University Press (2017)

5. Siciliano, B., Khatib, O., Kröger, T. (eds.): Springer handbook of robotics, vol. 200. Springer, Berlin (2008)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3