Author:
Nokhbeh Dehghan Kianoush,Rahamti Seyed Habib A.,Rahman Mohammadpour Soulmaz
Publisher
Springer International Publishing
Reference18 articles.
1. D. Ahangari, R. Daneshfar, M. Zakeri, S. Ashoori, B.S. Soulgani, On the prediction of geochemical parameters (TOC, S1 and S2) by considering well log parameters using ANFIS and LSSVM strategies. Petroleum (2021). https://doi.org/10.1016/j.petlm.2021.04.007
2. I.M. Alarifi, H.M. Nguyen, B.A. Naderi, A. Asadi, Feasibility of ANFIS-PSO and ANFIS-GA models in predicting thermophysical properties of Al2O3-MWCNT/oil hybrid nanofluid. Materials 12(21) (2019). https://doi.org/10.3390/ma12213628
3. O.A.M. Ali, A.Y. Ali, B.S. Sumait, Comparison between the effects of different types of membership functions on fuzzy logic controller performance. Int. J. 76, 76–83 (2015)
4. D.J. Armaghani, P.G. Asteris, A comparative study of ANN and ANFIS models for the prediction of cement-based mortar materials compressive strength. Neural Comput. Applic. 33(9), 4501–4532 (2021)
5. B.B. Ekici, U.T. Aksoy, Prediction of building energy needs in early stage of design by using ANFIS. Expert Syst. Appl. 38(5), 5352–5358 (2011)