Author:
MacAvaney Sean,Soldaini Luca,Goharian Nazli
Publisher
Springer International Publishing
Reference40 articles.
1. Amati, G., Van Rijsbergen, C.J.: Probabilistic models of information retrieval based on measuring the divergence from randomness. ACM Trans. Inf. Syst. (TOIS) 20(4), 357–389 (2002)
2. Bajaj, P., et al.: MS MARCO: a human generated machine reading comprehension dataset. arXiv preprint
arXiv:1611.09268
(2016)
3. Lecture Notes in Computer Science;M Braschler,2004
4. Braschler, M., Schäuble, P., Peters, C.: Cross-language information retrieval (CLIR) track overview. In: TREC (2000)
5. Cao, Z., Qin, T., Liu, T.Y., Tsai, M.F., Li, H.: Learning to rank: from pairwise approach to listwise approach. In: Proceedings of the 24th International Conference on Machine Learning, pp. 129–136. ACM (2007)
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Negative Sampling Techniques for Dense Passage Retrieval in a Multilingual Setting;Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval;2024-07-10
2. Toward Best Practices for Training Multilingual Dense Retrieval Models;ACM Transactions on Information Systems;2023-09-27
3. One-Shot Labeling for Automatic Relevance Estimation;Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval;2023-07-18
4. Soft Prompt Decoding for Multilingual Dense Retrieval;Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval;2023-07-18
5. Semantic matching based legal information retrieval system for COVID-19 pandemic;Artificial Intelligence and Law;2023-03-14