Contextualized Embeddings in Named-Entity Recognition: An Empirical Study on Generalization

Author:

Taillé Bruno,Guigue Vincent,Gallinari Patrick

Publisher

Springer International Publishing

Reference22 articles.

1. Akbik, A., Blythe, D., Vollgraf, R.: Contextual string embeddings for sequence labeling. In: Proceedings of the 27th International Conference on Computational Linguistics, pp. 1638–1649 (2018). http://www.aclweb.org/anthology/C18-1139

2. Augenstein, I., Derczynski, L., Bontcheva, K.: Generalisation in named entity recognition: a quantitative analysis. Comput. Speech Lang. 44, 61–83 (2017). https://linkinghub.elsevier.com/retrieve/pii/S088523081630002X

3. Chelba, C., et al.: One Billion Word Benchmark for Measuring Progress in Statistical Language Modeling. arXiv preprint arXiv:1312.3005 (2013). https://arxiv.org/pdf/1312.3005.pdf

4. Collobert, R., Weston, J.: Natural language processing (almost) from scratch. J. Mach. Learn. Res. 12, 2493–2537 (2011). http://www.jmlr.org/papers/volume12/collobert11a/collobert11a.pdf

5. Derczynski, L., Nichols, E., Van Erp, M., Limsopatham, N.: Results of the WNUT2017 shared task on novel and emerging entity recognition. In: 3rd Workshop on Noisy User-generated Text, pp. 140–147 (2017). https://www.aclweb.org/anthology/W17-4418

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Benchmarking Advanced Text Anonymisation Methods: A Comparative Study on Novel and Traditional Approaches;2024 13th International Conference on Modern Circuits and Systems Technologies (MOCAST);2024-06-26

2. Named Entity Recognition and Classification in Historical Documents: A Survey;ACM Computing Surveys;2023-09-14

3. Ontology-Based Information Extraction for Labeling Radical Online Content Using Distant Supervision;Information Systems Research;2023-05-03

4. Integrated use of KOS and deep learning for data set annotation in tourism domain;Journal of Documentation;2023-05-02

5. Dynamic Named Entity Recognition;Proceedings of the 38th ACM/SIGAPP Symposium on Applied Computing;2023-03-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3